LA75501

Monolithic Linear IC

For Use in TV/VCR Applications VIF/SIF Signal Processing IC

Overview

The LA75501 is an adjustment free VIF/SIF signal processing IC for PAL TV/VCR. It supports $38 \mathrm{MHz}, 38.9 \mathrm{MHz}$, and 39.5 MHz as the IF frequencies, as well as PAL sound multi-system (M/N,B/G, I, D/K), and contains an on-chip sound carrier trap and sound carrier BPF. To adjust the VCO circuit, AFT circuit, and sound filter, 4 MHz external crystal or 4 MHz external signal is needed.

Function

\author{

- VIF Block: VIF Amplifier, PLL Detector, IF AGC, RF AGC, Equalizer, amplifier, Buzz Canceller, SIF Trap, Digital AFT, FLL, 4MHz X'tal oscillation
 - 1st SIF Block: 1st SIF Amplifier, 1st SIF Detector, 1st SIF AGC
 - SIF Block: Limiter Amplifier Down Converter, PLL FM Detector SIF PLL SIF VCO, SIF BPF
 - Others: IF SW ($38.9 \mathrm{MHz}, 38 \mathrm{MHz}$), SIF4 System SW (B/G, I, D/K, M/N), IFAGC 2nd filter
}

Specifications

Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum Supply voltage	V_{CC}		7	V
Circuit voltage	V_{13}		V_{CC}	V
	V_{15}		V_{CC}	V
Circuit Current	124		-1	mA
	114		+0.5	mA
	I_{4}		-10	mA
	13		-3	mA
Allowable power dissipation	Pd max	$\mathrm{Ta} \leq 50^{\circ} \mathrm{C}$	470	mW
Operating temperature	Topr		-20 to +70	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-55 to +150	${ }^{\circ} \mathrm{C}$

Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications of our customer who is considering such use and/or outside the scope of our intended standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
■ Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

Operating Ranges at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Recommended supply voltage	V_{CC}		5.0	V
Operating supply voltage	V_{CC} op		4.5 to 6.0	V

Electrical Characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{fp}=38.0 \mathrm{MHz}$
VIF Block

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Circuit current	117			64.0	73.6	mA
Maximum RF AGC voltage	$\mathrm{V}_{14} \mathrm{H}$	Collector load 30k $2 \mathrm{VC2}=9 \mathrm{~V}$	8.5	9		V
Minimum RF AGC voltage	$\mathrm{V}_{14} \mathrm{~L}$			0.3	0.7	V
Input sensitivity	vi		33	39	45	$\mathrm{dB} \mu \mathrm{V}$
AGC range	GR		58			dB
Maximum allowable input	Vi max		92	97		$\mathrm{dB} \mu \mathrm{V}$
No-signal video output voltage	V_{4}		3.3	3.6	3.9	V
Sync. Signal tip voltage	V_{4} tip		1.0	1.3	1.6	V
Video output amplitude	V_{O}		1.7	2.0	2.3	Vp-p
Video S/N	S/N	B/G	48	52		dB
C-S best	IC-S	$\mathrm{P} / \mathrm{S}=10 \mathrm{~dB}$	26	32	38	dB
Differential gain	DG	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~dB} \mu, 87.5 \% \mathrm{MOD}$		3	6	\%
Differential phase	DP			2	10	deg
Black noise threshold voltage	$\mathrm{V}_{\text {BTH }}$			0.7		V
Black noise clamp voltage	$\mathrm{V}_{\mathrm{BCL}}$			1.8		V
VIF input resistance	R_{i}			2.5	3.0	$\mathrm{k} \Omega$
VIF input capacitance	C_{i}			3	6	PF
Maximum AFT voltage	$\mathrm{V}_{16} \mathrm{H}$		4.3	4.7	5.0	V
Minimum AFT voltage	$\mathrm{V}_{16} \mathrm{~L}$		0	0.2	0.7	V
AFT tolerance 1	dfa1	$\mathrm{f}=38.9 \mathrm{MHz}$		± 15	± 25	KHz
AFT tolerance 2	dfa2	$\mathrm{f}=38.0 \mathrm{MHz}$		± 15	± 25	KHz
ATF detection sensitivity	sf	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{~K} / 100 \mathrm{~K} \Omega$	30	55	80	$\mathrm{mV} / \mathrm{kHz}$
AFT Dead Zone	fda			30	60	MHz
AFT leak current	AFTL				± 4.0	$\mu \mathrm{A}$
APC pull-in range (U)	fpu		1.5	2.0		MHz
APC pull-in range (L)	fpl		1.5	2.0		MHz
VCO maximum variable range (U)	dfu		1.5	2.0		MHz
VCO maximum variable range (L)	dfl		1.5	2.0		MHz
VCO control sensitivity	β		2.0	4.0	8.0	kHz/mV
N Trap 1 (4.5M)	NT1		-30	-35		dB
N Trap 2 (4.8M)	NT1-1		-19	-24		dB
B/G Trap 1 (5.5M)	BT1		-27	-32		dB
B/G Trap 2 (5.85M)	BT1-1		-20	-25		dB
1 Trap 1 (6.0M)	IT1		-25	-30		dB
1 Trap 2 (6.55M)	IT1-1		-15	-20		dB
D/K Trap1 (6.5M)	DT1		-25	-30		dB
Group delay 1 NTSC (3.0M)	ngd1		30	60	90	ns
Group delay 1-1 NTSC (3.5M)	ngd1-1		160	230	300	ns
Group delay 2 B/G (4M)	bgd2		70	100	130	ns
Group delay 2-1 B/G (4.4M)	bgd2-1		160	230	300	ns
Group delay 31 (4M)	bgd3		20	50	80	ns
Group delay 3-1 I (4.4M)	bgd3-1		60	90	120	ns
Group delay 4 D/K (4M)	bgd4		0	30	60	ns
Group delay 4-1 D/K (4.4M)	bgd4-1		10	40	70	ns

LA75501

Continued from preceding page.

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Video f-characteristics MN1	VFMN1	M/N 1 to 2MHz	-1.0	0.0	1.0	dB
Video f-characteristics MN2	VFMN2	M/N 2 to 3MHz	0.0	1.0	2.0	dB
Video f-characteristics MN3	VFMN3	M/N 3.58MHz	0.5	2.0	3.5	dB
Video f-characteristics BG1	VFBG1	B/G 1 to 3MHz	-1.0	0.0	1.5	dB
Video f-characteristics BG2	VFBG2	B/G 3 to 4MHz	0.0	1.5	3.0	dB
Video f-characteristics BG3	VFBG3	B/G 4.43MHz	1.0	2.5	4.0	dB
Video f-characteristics I1	VFI1	11 to 3 MHz	-1.0	0.0	1.5	dB
Video f-characteristics I2	VFI2	13 to 4 MHz	0.0	1.0	2.0	dB
Video f-characteristics I3	VFI3	14.43 Hz	0.5	2.0	3.5	dB
Video f-characteristics DK1	VFDK1	D/K 1 to 3 MHz	-1.0	0.0	1.5	dB
Video f-characteristics DK2	VFDK2	D/K 3 to 4MHz	0.0	1.0	2.0	dB
Video f-characteristics DK3	VFDK3	D/K 4.43MHz	0.0	1.5	3.0	dB

1st SIF Block

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Conversion gain	V_{G}	$\mathrm{fp}-5.5 \mathrm{MHz}, \mathrm{Vi}=500 \mu \mathrm{~V}$	26	32	36	dB
SIF carrier output level	SO_{O}	$\mathrm{Vi}=10 \mathrm{mV}$		100		mVrms
1st SIF maximum input	Si max	$\mathrm{S}_{\mathrm{O} \pm 2 \mathrm{~dB}}$		106		$\mathrm{dB} \mu \mathrm{V}$
1st SIF input resistance	R ${ }^{\text {S }}$			2.0	2.4	$\mathrm{K} \Omega$
1st SIF input capacitance	$\mathrm{C}_{\mathrm{i}} \mathrm{S}$			3	6	PF

SIF Block

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Limiting sensitivity	Vi (lim)	$\begin{aligned} & f=5.5 \mathrm{MHz} \\ & \Delta \mathrm{~F}= \pm 30 \mathrm{kHz} \text { at } 400 \mathrm{~Hz} \end{aligned}$	46	52	58	$\mathrm{dB} \mu \mathrm{V}$
FM detector output voltage	V_{O} (FM)		480	600	750	mVrms
AM rejection ratio	AMR	$\mathrm{AM}=30 \%$ at 400 Hz	50	60		dB
Distortion	THD	$\mathrm{f}=5.5 \mathrm{MHz} \Delta \mathrm{F}= \pm 30 \mathrm{kHz}$		0.3	1.0	\%
FM detector output S/N	S/N (FM)	DIN. Audio	55	60		dB
BPF 3dB band width	BW			± 100		kHz
PAL de-emphasis	Pdeem	$\mathrm{fm}=3 \mathrm{kHz}$		-3		dB
NTSC de-emphasis	Ndeem	$\mathrm{fm}=2 \mathrm{kHz}$		-3		dB
PAL/NT Audio voltage gain difference	GD			6		dB

Others

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Minimum 4MHz level (at external input)	$\mathrm{X}_{4} \mathrm{MIN}$	Terminal value	80	86	92	$\mathrm{dB} \mu$
SIF system SW threshold voltage	$\begin{aligned} & v_{10} \\ & v_{11} \end{aligned}$			1.4		V
IF system SW threshold voltage	V_{12}				270	$\mathrm{K} \Omega$
Split/Inter SW	V_{16}			0.5		V

System Changeover

SW/SIF system SW
The SIF system can be changed over by setting A (pin 13) and B (pin 14) to GND and the open state respectively.

A	B	B/G	I	D/K	M/N	FM DET LEVEL	De-emphasis
GND	GND				0	6 dB	$75 \mu \mathrm{~s}$
GND	OPEN			O		0 dB	$50 \mu \mathrm{~s}$
OPEN	GND		O			0 dB	$50 \mu \mathrm{~s}$
OPEN	OPEN	O				0 dB	$50 \mu \mathrm{~s}$

Note: ' O ' indicates that the system is selected.

IF system SW

The IF frequency is selected 38.9 MHz mode with the pin 12 (crystal oscillation) open.
The IF frequency is selected 38 MHz mode by adding $220 \mathrm{~K} \Omega$ between the pin 12 and GND.

Inter carrier SW

Inter-carrier is selected by setting the 1 st SIF input (pin 16) to GND.

Package Dimensions

unit: mm
3067B

Pin Assignment

SIF INPUT 1	LA75501	24	FM DET OUT
FM FILTER 2		23	RF AGC VR
$1^{\text {st }}$ SIF OUT 3		22	SIF PLL FILTER
VIDEO DET OUT 4		21	FILTER CONTR
SIF AGC FILTER 5		20	VIF INPUT
APC FILTER 6		19	VIF INPUT
FLL FILTER 7		18	GND
VCO COIL 8		17	V_{CC}
VCO COIL 9		16	${ }^{\text {st }}$ SIF INPUT
SYSTEM SW (A) 10		15	IF AGC FILTER
SYSTEM SW (B) 11		14	RF AGC OUT
4 MHz OSC 12		13	AFT OUT

LA75501

Block Diagram and AC Characteristics Test Circuit

Input Impedance Test Circuit

Test Conditions

V1. Circuit current [17]
(1) External $\operatorname{AGC}\left(\mathrm{V}_{17}=1.5 \mathrm{~V}\right)$
(2) RF AGC VR MAX
(3) Connect an ammeter to the V_{CC} and measure the incoming current to pin 17.

V2. V3. Maximum RF AGC voltage, Minimum RF AGC voltage [$\mathrm{V}_{14} \mathrm{H}, \mathrm{V}_{14} \mathrm{~L}$]
(1) Internal AGC
(2) Input a $38.0 \mathrm{MHz}, 10 \mathrm{mVrms}$, continuous wave to the VIF input pin.
(3) Adjust the RF AGC VR (resistance max.) and measure the maximum RF AGC voltage.
(4) Adjust the RF AGC VR (resistance min.) and measure the minimum RF AGC voltage. (3), (4) Measuring point F

V4. Input sensitivity [Vi]
(1) Internal AGC
(2) $\mathrm{fp}=38.0 \mathrm{MHz} 400 \mathrm{~Hz} 40 \% \mathrm{AM}$ (VIF input)
(3) Turn off the SW1 and put $100 \mathrm{k} \Omega$ through.
(4) Measure the VIF input level at which the 400 Hz detection output level at test point A becomes 0.7 Vp -p.

V5. AGC range [GR]

(1) Apply the V_{CC} voltage to the external AGC, If AGC (pin 15).
(2) In the same manner under the same conditions as for V4 (input sensitivity), measure the VIF input level at which the detection output level becomes 0.7 Vp -p. Vil
(3) $\mathrm{GR}=20 \log \frac{\mathrm{Vil}}{\mathrm{Vi}} \mathrm{dB} *$ Vi: Input sensitivity

V6. Maximum allowable input [Vi max]
(1) Internal AGC
(2) $\mathrm{fp}=38.0 \mathrm{MHz} 15 \mathrm{kHz} 78 \% \mathrm{AM}$ (VIF input)
(3) VIF input level at which the detection output level at test point A becomes video output $\left(\mathrm{V}_{\mathrm{O}}\right) \pm 1 \mathrm{~dB}$.

V7. No-signal video output voltage [V_{4}]
(1) Apply the V_{CC} voltage to the external AGC, IF AGC (pin 15).
(2) Measure the DC voltage of VIDEO output (A).

V8. Sync. signal tip voltage [V6tip]
(1) Internal AGC
(2) Input a $38.0 \mathrm{MHz}, 10 \mathrm{mVrms}$, continuous wave to the VIF input pin.
(3) Measure the DC voltage of VIDEO output (A).

V9. Video output level [VO]
(1) Internal AGC
(2) $\mathrm{fp}=38.0 \mathrm{MHz} \quad 15 \mathrm{kHz} 78 \% \mathrm{AM}$
$\mathrm{Vi}=10 \mathrm{mVrms}$ (VIF input)
(3) Measure the peak value of the detection output level at test point A. (Vp-p)

V10.V11. Black noise threshold and clamp voltage [$\mathrm{V}_{\mathrm{B}} \mathrm{H}, \mathrm{V}_{\mathrm{BCL}}$]
(1) Apply DC voltage (1 to 3 V) to the external AGC, IF AGC (pin 15) and adjust the voltage.
(2) $\mathrm{fp}=38.0 \mathrm{MHz} 400 \mathrm{~Hz} 40 \%$ AM 10mVrms (VIF input)
(3) Adjust the IF AGC (pin 15) voltage to operate the noise canceller. Measure the $\mathrm{V}_{\mathrm{BTH}}, \mathrm{V}_{\mathrm{BCL}}$ at test point A .

V12. Video S/N [S/N]
(1) Internal AGC
(2) $\mathrm{fp}=38.0 \mathrm{MHz} \mathrm{CW}=10 \mathrm{mVrms}$ (VIF input)
(3) Measure the noise voltage at test point A in RMS volts through a HPF: 100 kHz , LPF: 5 MHz filter.
..... Noise voltage (N)
(4) $\mathrm{S} / \mathrm{N}=20 \log \frac{\text { Video voltage }(\mathrm{Vp-p})}{\mathrm{N}(\text { Vrms })}=20 \log \frac{1.3 \mathrm{Vp-p}}{\mathrm{~N}(\mathrm{Vrms})} \quad(\mathrm{dB})$

V13. C/S beat [Ics]
(1) Internal AGC.
(2) $\mathrm{fp}=38.0 \mathrm{MHz}$ APL50\% 87.5\% Modulation video signal.
(3) Measure the difference between the levels for 4.43 MHz and 1.07 MHz components at test point A .

V14.V15. Differential gain, differential phase [DG, DP]
(1) Internal AGC
(2) $\mathrm{fp}=38.0 \mathrm{MHz}$ APL50\% 87.5\% Modulation video signal $\mathrm{Vi}=10 \mathrm{mVrms}$
(3) Measure the DG and DP at test point A.

V16. V17.V18 Maximum, minimum AFT voltage $\left[\mathrm{V}_{13} \mathrm{H}, \mathrm{V}_{13} \mathrm{~L}\right]$
(1) Internal AGC
(2) $\mathrm{fp}=38.0 \mathrm{MHz} \pm 1.5 \mathrm{MHz} \mathrm{Vi}=10 \mathrm{mVrms}$ (VIF input)
(3) Measure maximum and minimum AFT output voltage by changing the input frequency.
(4) Maximum voltage: $\mathrm{V}_{13} \mathrm{H}$, minimum voltage: $\mathrm{V}_{13} \mathrm{~L}$.

V19.V20.V21. AFT detector sensitivity, AFT Dead Zone, AFT tolerance [dfa, Sf, fda]
(1) Measure the frequency deviation when the voltage at the measuring point B changes from V1 to V2. $\cdots \cdots \Delta f$

$$
\mathrm{Sf}(\mathrm{mV} / \mathrm{kHz})=\frac{\mathrm{V} 1-\mathrm{V} 2}{\Delta \mathrm{f}}
$$

(2) Measure the width in which the voltage at the measuring point B does not change.
(3) Calculate as follows:

$$
\mathrm{fda}(\mathrm{kHz})=\mathrm{f} 2-\mathrm{f} 1
$$

(4) Calculate as follows:

IF Center frequency: $38.9 \mathrm{MHz}, 38 \mathrm{MHz}$

$$
\mathrm{dfa}(\mathrm{kHz})=\mathrm{fc}-\frac{\mathrm{f} 1+\mathrm{f} 2}{2}
$$

V23. V24. VIF input resistance, input capacitance $\left[\mathrm{R}_{\mathrm{i}}, \mathrm{C}_{\mathrm{i}}\right]$
(1) External AGC ($\left.\mathrm{V}_{15}=2 \mathrm{~V}\right)$
(2) Referring to the Input Impedance Test Circuit, measure R_{i} and C_{i} with an impedance analyzer.

V25.V26. APC pull-in range [fpu, fpl]
(1) Internal AGC
(2) $\mathrm{fp}=33 \mathrm{MHz}$ to $44 \mathrm{MHz} \mathrm{CW} ; 10 \mathrm{mVrms}$
(3) Adjust the SG signal frequency to be higher than $\mathrm{fp}=38.0 \mathrm{MHz}$ to bring the PLL to unlocked state. Note; The PLL is taken as in unlocked state when a beat signal appears at test point A.
(4) When the SG signal frequency is lowered, the PLL is brought to locked state again. f1
(5) Lower the SG signal frequency to bring the PLL to unlock state.
(6) When the SG signal frequency is raised, the PLL is brought to locked state again. f2
(7) Calculate as follows:
$\mathrm{fpu}=\mathrm{f} 1-38.0 \mathrm{MHz}$ $\mathrm{fpl}=\mathrm{f} 2-38.0 \mathrm{MHz}$

V27.V28. VCO maximum variable range (U, L) [dfu, dfl]
(1) Apply the $V_{C C}$ voltage to the external AGC, IF AGC (pin 15).
(2) fl is taken as the frequency when 1 V is applied to the APC pin (pin 7). In the same manner, fu is taken as the frequency when 5 V is applied to the APC pin (pin 7).
$\mathrm{dpu}=\mathrm{fu}-38.0 \mathrm{MHz}$
$\mathrm{dfl}=\mathrm{fl}-38.0 \mathrm{MHz}$

LA75501

V29. VCO control sensitivity [β]
(1) Apply the V_{CC} voltage to the external AGC, IF AGC (pin 15).
(2) Apply the 3 V to the external FLL, FLL (pin 10).
(3) Pick up the VCO oscillation frequency from the VIDEO output (A), GND, etc. And adjust the VCO coil so that the frequency becomes 38.0 MHz .
(4) f 1 is taken as the frequency when 2.8 V is applied to the APC pin (pin 7). In the same manner, f 2 is taken as the frequency when 3.2 V is applied to the APC pin (pin 7).

$$
\beta=\mathrm{f} 2-\frac{\mathrm{f} 1-\mathrm{f} 2}{400} \quad(\mathrm{kHz} / \mathrm{mV})
$$

F1. 1st SIF conversion gain [V_{G}]
(1) Internal AGC
(2) $\mathrm{fp}=38.0 \mathrm{MHz} \mathrm{CW} ; 10 \mathrm{mV}$ (VIF input)
$\mathrm{fs}=32.5 \mathrm{MHz} \mathrm{CW} ; 500 \mu \mathrm{~V}$ (1st SIF input) $\cdots . . \mathrm{V} 1$
(3) measure the detection output level at test point $\mathrm{C}(5.5 \mathrm{MHz}) \cdots . . \mathrm{V} 2$
(4) $\mathrm{V}_{\mathrm{G}}=20 \log \frac{\mathrm{~V} 2}{\mathrm{~V} 1} \mathrm{~dB}$

F2. 5.5 MHz output level [SO]
(1) Internal AGC
(2) $\mathrm{fp}=38.0 \mathrm{MHz} \mathrm{CW} ; 10 \mathrm{mV}$ (VIF input) $\mathrm{fs}=32.5 \mathrm{MHz} \mathrm{CW} ; 10 \mathrm{mV}$ (1st SIF input) $\cdots .$. V1
(3) Measure the detection output level at test point $\mathrm{C}(5.5 \mathrm{MHz}) . \cdots \cdot \mathrm{S}_{\mathrm{O}}$ (mVrms)

F3. 1st maximum input [Si max]
(1) Internal AGC
(2) $\mathrm{fp}=38.0 \mathrm{MHz} \mathrm{CW} ; 10 \mathrm{mV}$ (VIF input) $\mathrm{fs}=32.5 \mathrm{MHz} \mathrm{CW}$; Variable (1st SIF input)
(3) Input level at which the detection output (5.5 MHz) at test point C becomes $\mathrm{S}_{\mathrm{O}} \pm 2 \mathrm{~dB}$. $\cdots . . \mathrm{Si} \max$

F4.F5. 1st SIF input resistance, input capacitance [Ri (SIF1), C_{i} (SIF1)]
(1) Referring to the Input Impedance Test Circuit, measure R_{i} and C_{i} with an impedance analyzer.

S1. SIF Limiting sensitivity [V_{i} (lim)]
(1) Apply the V_{CC} voltage to the external AGC, IF AGC (pin 15).
(2) $\mathrm{fs}=5.5 \mathrm{MHz} \quad \mathrm{fm}=400 \mathrm{~Hz} \quad \Delta \mathrm{~F}= \pm 300 \mathrm{kHz}$ (SIF input)
(3) Set the SIF input level to 31.6 mVrms and measure the level at test point D. V1
(4) Lower the SIF input level and measure the input level which becomes V1. 3dB.

S2.S4. FM detection output voltage, total harmonics distortion [$\mathrm{V}_{\mathrm{O}}(\mathrm{FM})$, THD]
(1) Apply the V_{CC} voltage to the external AGC, IF AGC (pin 15).
(2) $\mathrm{fs}=5.5 \mathrm{MHz} \quad \mathrm{fm}=400 \mathrm{~Hz} \quad \Delta \mathrm{f}= \pm 30 \mathrm{kHz}$ (SIF input $\mathrm{Vi}=31.6 \mathrm{mVrms}$)
(3) Measure the FM detection output voltage, total harmonics distortion at test point D.

S3. AM rejection ratio [AMR]
(1) External AGC $\left(\mathrm{V}_{15}=\mathrm{V}_{\mathrm{CC}}\right)$
(2) $\mathrm{fs}=5.5 \mathrm{MHz} \mathrm{fm}=400 \mathrm{~Hz} \mathrm{AM}=30 \%$ (SIF input $\mathrm{Vi}=31.6 \mathrm{mVrms}$)
(3) Measure the output level at test point D. VAM
(4) $\mathrm{AMR}=20 \log \frac{\mathrm{~V}_{\mathrm{O}}(\mathrm{DET})}{\mathrm{VAM}} \mathrm{dB}$

S5. SIF S/N [S/N (FM)]
(1) External AGC $\left(\mathrm{V}_{15}=\mathrm{V}_{\mathrm{CC}}\right)$
(2) $\mathrm{fs}=5.5 \mathrm{MHz} \mathrm{NO} \mathrm{MOD} \mathrm{Vi}=31.6 \mathrm{mVrms}$
(3) Measure the output level at test point D. Vn
(4) $\mathrm{S} / \mathrm{N}=201 \mathrm{Jg}_{\mathrm{Vn}}^{(\mathrm{DET})}$

S6. PAL/NT Audio voltage gain difference [GD]
(1) External AGC ($\mathrm{V}_{15}=\mathrm{V}_{\mathrm{CC}}$)
(2) $\mathrm{fs}=4.5 \mathrm{MHz} \mathrm{fm}=400 \mathrm{~Hz} \Delta \mathrm{~F}= \pm 30 \mathrm{kHz}$
(SIF input $\mathrm{Vi}=31.6 \mathrm{mVrms}$)
(3) Set system switches $[\mathrm{A}(\operatorname{pin} 10)$ and $B($ pin 11)] to GND.
(4) Measure the FM detector output voltage at test point D. Vnt
(5) Calculate as follows:
$\mathrm{GD}(\mathrm{db})=\mathrm{Vnt}-\mathrm{V}_{\mathrm{O}}(\mathrm{FM})$

S7.S8. PAL, NT de-emphasis [Pdeem, Ndeem]

(1) External AGC $\left(\mathrm{V}_{15}=\mathrm{V}_{\mathrm{CC}}\right)$
(2) fs $=5.5 \mathrm{MHz} \mathrm{fm}=3 \mathrm{kHz} \Delta \mathrm{F}= \pm 30 \mathrm{kHz}$
(SIF input $\mathrm{Vi}=31.6 \mathrm{mVrms}$)
(3) Open system switches (A (pin 10) and B (pin 11)). (BG mode)
(4) Measure the FM detector output voltage at test point D. Vp
(5) Calculate as follows: Pdeem (dB) $=\mathrm{Vp}-\mathrm{V}_{\mathrm{O}}(\mathrm{FM})$
(6) $\mathrm{fs}=4.5 \mathrm{MHz} \mathrm{fm}=2 \mathrm{kHz} \Delta \mathrm{F}= \pm 30 \mathrm{kHz}$ (SIF input $\mathrm{Vi}=31.6 \mathrm{mVrms}$)
(7) Set system switches [A (pin 10) and B (pin 11)] to GND. (NT mode)
(8) Measure the FM detector output voltage at test point D. Vp
(9) Calculate as follows: Ndeem $(\mathrm{dB})=\mathrm{Vnt}-\mathrm{V}_{\mathrm{O}}(\mathrm{FM})$

■ SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
■ SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
\square In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.

- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
\square Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
\square Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellctual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of April, 2007. Specifications and information herein are subject to change without notice.

